Вертикальная вертушка ion vertical vinyl

6.1. Основные особенности и качественные показатели ВКУ

Назначение ВКУ – обеспечить при заданном сопротивление нагрузки требуемый уровень сигнала. Если нагрузка активная, то ВКУ должен обеспечить необходимую мощность сигнала:

Если же нагрузка реактивная, например, СН, то необходимое выходное UВЫХ. Требуемый уровень выходного сигнала должен обеспечиваться при допустимых линейных и нелинейных искажениях, а также при возможности меньшем потреблением энергии источника питания. Для получается максимальной отдаваемой мощности УЭ должен работать в оптимальных условиях и иметь оптимальное сопротивления нагрузки:

;

Поскольку ВКУ работает при больших уровнях сигнала, то он создаёт основные нелинейные искажения усилителя, т.е. ВКУ работает в режиме “больших сигналов”.

ВКУ потребляет основную мощность источника питания, и экономичность является одной из основных характеристик:

где P = EП·i – потребляемая мощность. КПД можно представить и в другом виде:

(6.1)

i = ICP – среднее значение тока; в режиме класса А равное току в РТ. – коэффициент использования усилительного элемента по току; – коэффициент использования усилительного элемента по напряжению; – коэффициент использования источника питания. Уравнение (6.1) показывает, что КПД зависит от коэффициентов использования усилительного элемента и его режима работы.

Улучшение параметров выходного двухтактного каскада

Во всех транзисторных каскадах вообще и в двухтактном каскаде в частности возникают нелинейные искажения, которые зависят от многих факторов, а в частности от таких как нелинейность характеристик транзисторов и неполной симметрией плеч каскада. Чтобы уменьшить величину нелинейных искажений необходимо более тщательно подбирать транзисторы по величине коэффициента усиления, а также параметры самого каскада: режимы работы и применение отрицательной обратной связи.

Выходной каскад работающий в классе усиления B имеет значительно большие нелинейные искажения, чем каскад работающий в классе AB. Поэтому абсолютное большинство выходных каскадов работают в классе AB. Для установления такого режима работы необходимо создать некоторое напряжение смещения на базах транзисторов VT1 и VT2, которое зависит от величины сопротивления резистора R2. При этом уменьшается величина параметров Pвых.max и КПД каскада, поэтому величина тока коллектора транзисторов VT1 и VT2 не должна превышать 0,1 iC max.

Для уменьшения зависимости параметров выходного каскада от изменения температуры довольно часто вместо резистора R2 включают диоды или терморезисторы. В этом случае ток покоя выходных транзисторов устанавливается экспериментально: в случае, когда необходимо увеличить ток покоя последовательно с диодом включают резистор, а в случае, когда необходимо уменьшить ток покоя резистор ставят последовательно с диодом.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

6.3. Однотактная трансформаторная схема на биполярном транзисторе

Данная схема применяется обычно в ВКУ групповых усилителей и работают в режиме класса “А”. В выходной цепи включается трансформатор. Он служит элементом связи выхода усилителя с нагрузкой, рис. 6.1:

Рис. 6.1. ВКУ на биполярном транзисторе.

Заметим, что трансформатор используется как элемент связи и на входе групповых усилителей. Трансформаторная схема ВКУ имеет два основных преимущества:

    • Позволяет заданное сопротивление нагрузки преобразовать к оптимальному значению УЭ;
    • Позволяет повысить КПД ВКУ, т.к. малые потери в выходной цепи; для схемы, приведенной на рис. 6.1

UK0 = EП –iK0·RH= ≈ EП –iK0·RЭ.

Здесь RH= = RЭ + r1 ≈ RЭ, т.к. r1 << RЭ. RH= – сопротивление нагрузки по постоянному току; r1 – активное сопротивление первичной обмотки трансформатора.

К недостаткам трансформаторного каскада относится:

  • Большие размеры, масса и стоимость;
  • Сравнительно узкая полоса рабочих частот;
  • Невозможность выполнения усилителя по интегральной технологии.

При использование БТ коэффициент использования ξ = ψ и согласование обеспечивается при:

Поскольку входное сопротивление трансформатора равно:

то ;

откуда nОПТ равно: ; Выбор транзистора для ВКУ производится по частоте fh21Э ≥ 3·fВ и допустимой мощности рассеивания на коллекторной переходе:

Для усилителей МСП обычно ξ = ψ = 0,5 ÷ 0,7. Это позволяет получить малые нелинейные искажения (большое затухание нелинейности).

Эквивалентная схема трансформатора для широкой полосы частот имеет следующий вид:

Эта схема учитывает влияние всех реактивных элементов. Здесь обозначено: С′ТР = СТР·n2 – эквивалентная емкость трансформатора; – пересчитанное к первичной обмотке сопротивление нагрузки; L1 – индуктивность холостого хода; LS1 и LS2 – индуктивность рассеивания первичной и вторичной обмоток; r1 и r2 – активные сопротивления первичной и вторичной обмоток; ; ; rC – сопротивление потери стали сердечника трансформатора. У малогабаритных трансформаторов СТР = (15÷40) пФ, средних размеров (40÷150) пФ.

В зависимости от области частот проявляется влияние тех или иных элементов схемы. Для области НЧ LS1, L′S2 и C′TP не влияют и можно исключить из эквивалентной схемы. В области НЧ влияет индуктивность холостого хода L1. В области ВЧ влияет LS1, L′S2 и C′TP; при этом индуктивность холостого хода L1 не влияет на частотные искажения.

Вертикальная вертушка Ion Vertical Vinyl

(0)

30.05.2011

#Вертушка, #Проигрыватель, #Винил, #Динамик

Похожие новости

Новинка от Vincent – фонокорректор PHO-300 Немецкий производитель аудиокомпонентов Vincent дополняет линейку Power Line недорогим… Компания Bang & Olufsen роняет цену на наушники! Черная пятница – ключ к качественным продуктам, особенно в поиске достойного комплекта наушников…. Audio Pro BT5 приехала в Россию Долгожданная беспроводная акустика Audio Pro BT5 наконец-то добралась до полок российских… EgglestonWorks Viginti покорили звукорежиссёров EgglestonWorks – известная американская компания, расположенная в городе Мемфис, США. Она является… Acuhorn R2R XT — новый R2R-ЦАП Acuhorn R2R XT (€ 6 900) — новый цифро-аналоговый преобразователь с ламповым выходным каскадом на… Taiko Audio SGM Extreme — ультимативный музыкальный сервер Taiko Audio SGM Extreme — очень дорогой (€ 24 000 за модель с хранилищем на 2 Тб) музыкальный…

Популярные новости

Как выглядит самая дорогая High End система в мире Что будет, если объединить одни из самых дорогих акустических систем в мире, Wilson Audio WAMM… Sony SA-Z1 — вот это колонки! Новинка на выставке IFA 2019 — акустические системы Sony SA-Z1, которые войдут в топовую линейку… RADA Valkyrie 36SRPP — на советских лампах! Моно-усилители мощности RADA Valkyrie 36SRPP используют советские лампы и развивают мощность до 20… Accuphase A-48 – новый усилитель мощности со «стрелочками» Японская компания Accuphase выпустила новый стереофонический усилитель мощности A-48 со столь… Black Rhodium Adagio RCA-USB-С – кабели для неграмотного аудиофила Британская фирма Black Rhodium выпустила гениальные кабели! Модель Adagio RCA-USB предназначена для… Как делают колонки B&W Nautilus ценой в 5,4 млн. руб. Акустические системы B&W Nautilus — не только визитная карточка известной английской компании, но и…

Характеристики ЦАП

Наиболее важные характеристики ЦАП:

  • Разрядность, шаг квантования (разрешающая способность) и точность преобразования.
  • Передаточная характеристика (ПХ) — зависимость выходного сигнала ЦАП от входных данных.
  • Разрядность (N) — количество бит во входном коде.
  • Разрешение — это выходное напряжение, соответствующее 1 МЗР. Оно зависит от количества разрядов и определяет точность преобразования сигнала.
  • Частота дискретизации (частота Найквиста) — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова, для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не меньше удвоенной максимальной частоты в спектре сигнала.
  • Полная шкала — диапазон значений выходного сигнала.
  • Монотонность — участок на ПХ, где наклон постоянен. На этом участке ЦАП линеен.
  • Время установления — интервал времени от момента изменения входного кода до окончательного вхождения выходного сигнала в заданный диапазон отклонения.
  • Выходной выброс — это переходный процесс, возникающий во время смены входных данных. Величина выброса зависит от количества переключаемых разрядов.
  • Погрешность смещения нуля — разность между фактическим и идеальным выходным сигналом, когда на входе ноль.
  • Погрешность ПШ — разница между фактическим выходным напряжением и напряжением ПШ.
  • Погрешность усиления — отклонение наклона ПХ от идеального.
  • Дифференциальная нелинейность — разность приращений выходных сигналов, соответствующих смежным соседним кодам.
  • Интегральная нелинейность — максимальное отклонение реальной ПХ от прямой линии.

ВПЕЧАТЛЕНИЯ ОТ ПРОСЛУШИВАНИЯ

К моему большому сожаления при всем арсенале  имеющихся у меня средств я не могу и близко передать ощущения возникающие при прослушивании данных систем. Отмечу несколько ключевых наблюдений:

  • Беспрецедентный стереоэффект.  Не ощущаемая нигде ранее необычайная голографичность создаваемых звуковых образов позволяет без труда определить местоположение музыкантов и безошибочно локализовать источник звука. А вот и загадка: динамики расположены практически на полу, а звук с осязаемым 3D эффектом воспроизводится на уровне глаз и может уходить вверх без предела, если это так и записано на фонограмме. По словам представителя компании, такая высокая точность воспроизведения и локализации звуковых образов по ширине, глубине и высоте достигается благодаря отсутствию в акустическом оформлении таких элементов, как ящик, фазоинвертор, рупор и так далее, которые потенциально могут нарушать правильное воспроизведение низкочастотной огибающей сигнала. Но, это – уже наука, кто хочет может узнать детали непосредственно у производителей.
  • Легкость и воздушность подачи, бархатные шелестящие высокие и необычайно быстрый четкий бас
  • Масштабность. Эти колонки ближе к так называемой американскому звучанию – масштабная стена звука без труда заполняющая даже большое помещение без намека на потерю детальности.
  • Кстати детальность – слышно все! и самые нежные трения барабанных палочек о тарелки и прикосновения  к струнам, и дыхание певцов… Я несколько раз переслушивал любимые композиции в исполнении Эммы Шаплин, да незабываемые впечатления – ее ангельский вокал парил где-то в поднебесье, несмотря на то, что физически я находился в обыкновенной комнатушке обычного дома типовой застройки.
  • универсальность как жанровая так и… возможность использования в системах домашнего театра. Скажу честно, я с некоторым скепсисом отнесся к предложению посмотреть несколько сцен из фильмов. Ну во первых это не совсем то , ради чего мы собрались, а во вторых – двухканальное стерео без сабвуфера и кино? У меня в гостях были завсегдатаи местного клуба аудиоголиков и в определенный момент начался ожидаемый галдеж. Но мы ради интереса включили сюжет из фильма Аватар. Мы все притихли и минут 20 просидели не шелохнувшись – это было настоящее погружение в мир кино с убойнейшей озвучкой: два динамика создали звуковой образ целиком и полностью совпадающий с визуальным рядом. Причем отсутствие центрального канала и сабвуфера мы вообще не заметили… Мы были просто заворожены динамичностью и детальностью звуковых событий! Представители R2R Audio называют этот эффект “высоким коэффициентом корреляции и пространственно-временной идентичностью аудио-визуальных образов”. Ок, будем знать!

Типы ЦАП (цифро аналоговый преобразователь)

Наиболее общие типы электронных ЦАП:

широтно-импульсный модулятор— простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
ЦАП передискретизации, такие как дельта-сигма ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным

На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
взвешивающий ЦАП, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
цепная R-2R схемаявляется вариацией взвешивающего ЦАП. В R-2R ЦАП взвешенные значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. Недостатком метода является более низкая скорость вследствие паразитной емкости;
сегментный ЦАПсодержит по одному источнику тока или резистору на каждое возможное значение выходного сигнала. Так, например, восьмибитный ЦАП этого типа содержит 255 сегментов, а 16-битный — 65535. Теоретически, сегментные ЦАП имеют самое высокое быстродействие, так как для преобразования достаточно замкнуть один ключ, соответствующий входному коду;
гибридные ЦАПиспользуют комбинацию перечисленных выше способов. Большинство микросхем ЦАП относится к этому типу; выбор конкретного набора способов является компромиссом между быстродействием, точностью и стоимостью ЦАП.

Схема цифро-аналогового преобразователя.

Отсечение постоянной составляющей

Многие ЦАП-ы с токовым выходом (TDA1541, TDA1543) имеют такую особенность, что выходной ток, помимо полезного сигнала содержит постоянную составляющую Ibias.

В случае TDA1387 ток Ibias составляет около 1 мА. Соответственно полезный аналоговый сигнал на выходе ЦАП-а лежит в интервале от 1 до 2 мА.

На графике зависимости выходного тока от времени это можно отобразить следующим образом:

Усилитель на ОУ одинаково хорошо усиливает как переменный, так и постоянный ток. Но можно очень просто превратить его в усилитель переменного напряжения, отсекающий постоянную составляющую.

Для этого, правда все же придется добавить конденсатор в цепь ОС операционного усилителя. Однако теперь этот конденсатор включается последовательно с резистором идущим на землю с инвертирующего входа.

Образованная конденсатором и резистором цепь является Фильтром Высокой Частоты. Она уже не вносит фазовых искажений в слышимый диапазон частот, зато отсекает постоянную состовляющую и инфранизкие звуки.

Величина конденсатора выбирается так, чтобы частота среза лежала ниже 20Гц. Для показанных номиналов частота среза составляет чуть меньше 10 Гц, а коэффициент усиления сигнала по напряжению равен 11.

Конденсатор можно установить и на 2 мкФ. Тогда частота среза будет не 9.65Гц, а 10.6Гц. Что не критично. Само собой конденсатор стоит брать неполярный и желательно качественный…

Вертушка-книжка на 5 карманов А4

Вертушка морская ВМ-М рис. Основные части прибора укреплены на раме, которая может свободно вращаться около вертикальной оси на шарикоподшипниках. В нижней части оси имеется ушко для подвешивания гидрометрического груза, в верхней части — подвесное приспособление для закрепления троса. Рама имеет две консоли, на которых крепится защитное колесо лопастного винта для предохранения его от повреждений.

Скоростные счетчики с крыльчатой и винтовой вертушкой разбирают. Промывают в бензине сетку, струевыпрямитель, вертушку и передаточный механизм, очищая щеткой образовавшийся в процессе работы налет.

R 2R ЦАП. Практическое применение

Для преобразования цифрового сигнала в аналоговый, используют устройства под названием цифро-аналоговые преобразователи. Как правило, они существуют в виде отдельных микросхем которые порой труднодоставаемы. Если к ЦАПу не предъявляются серьёзные требования, то его можно сделать самостоятельно из обычных резисторов. Называется такой ЦАП — R 2R. Своё название он получил из-за номиналов применяемых в нём резисторов с сопротивлениями R и 2*R. Сопротивления по идее могут быть любыми, но в разумных пределах разумеется. Если поставить очень большие например по несколько мегаом, то нагрузка которая подключена к выходу, внесет существенные искажения в сигнал. Напряжение начнёт проседать. Я взял резисторы с сопротивлениями 1Ком и 2Ком (просто первое что попалось под руку).


Hint Если есть много резисторов одного сопротивления, то получить сопротивление вдвое меньшее, можно просто запараллелив два одинаковых резистора. Для такого ЦАПа желательно использовать резисторы с 1%-м допуском. У меня к сожалению таких не нашлось, и я использовал обычные. На моей отладочной плате этот ЦАП выглядит так:

Как оно работает Каждый вход ЦАПа имеет свой «вес». Входы расположены в порядке уменьшения веса слева направо. Т.е. левый вход оказывает самое большое влияние на выходной сигнал следующий за ним вдвое меньше итд. Ну а самый последний (правый) вход изменяет выходной сигнал на ничтожные милливольты. Если известна комбинация бит поступающая на вход ЦАПа, то рассчитать напряжение очень легко. Предположим, что на входе у нас число 10010101 тогда выходное напряжение можно рассчитать по формуле

Uвых=Uпит * (1 * 1/2 + * 1/4 + *1/8+ 1*1/16 +*1/32+1*1/64+*1/128+1*1/256)

Формула простая, и мозг ни кому взорвать не должна. Согласно ей, напряжение на выходе будет равно 2.91 вольта. Uпит — напряжение питания микроконтроллера. При расчете использовалось значение 5 вольт. Таким образом, восьмибитный ЦАП способен выдать 256 различных напряжений с шагом около 20 милливольт, что вполне неплохо.

Применение Применений у данного данного ЦАПа несколько. К примеру можно сделать генератор сигналов различной формы. Например пилы:

или скажем треугольника:

ну или можно вывести сигнал эротической экзотической формы:

А можно еще выводить звук. Звук конечно не самого хорошего качества, но для создания какого-нибудь дверного звонка, его вполне достаточно. Проще всего воспроизводить звук формата WAV т.к. он не сжат ни какими аудиокодеками и не потребуется его декодировать перед воспроизведением. Из-за того что звук ни чем не сжат, размер звукового файла не внушает оптимизма. Во флеш микроконтроллера много не влезет. Для эксперимента по выводу звука через ЦАП было решено заюзать SD карту памяти на 2 гб. Не буду рассказывать всех тонкостей работы с картой, (возможно напишу об этом подробно в следующий раз) хочу лишь дать возможность оценить качество звучания такого ЦАПа (звук 8 бит 16 кГц моно):

Преимущества и недостатки К преимуществам можно отнести:

  • Возможность увеличения разрядности
  • Неплохая частота дискретизации
  • Схемотехническая простота и повторяемость

Недостатки тоже есть :

  • Качество ЦАПа сильно зависит от применяемых резисторов
  • Сопротивление ключей порта микроконтроллера вносят искажения
  • Громоздкость на плате

Благодарности Спасибо DiHalt’у за функцию выводящую последнюю осциллограмму

Формирование выходного сигнала

ЦАП можно подключить к нагрузке напрямую, однако, как правило, ставится дополнительный буфер или согласующее устройство. Это может быть неинвертирующий ОУ или повторитель напряжения (см. рис. 6). При использовании буфера следует удостовериться, что он не вносит погрешность больше 1/2 МЗР. При согласовании ОУ с ЦАП следует учитывать и другие параметры ОУ: полосу пропускания, размах напряжения и т.д.

Рис. 6. Способы формирования выходного сигнала Земля

Если на плате имеется только один слой земли, то шум от цифровых элементов может проникнуть в аналоговую часть схемы. Чтобы избежать этого, рекомендуется делать отдельные полигоны земли для аналоговой и цифровой частей, соединенные тонким проводником. Второй способ — использовать два внутренних слоя, соединенных сквозным отверстием. Этот метод более надежен, однако стоимость платы увеличивается

Литература

  1. McCulley В. Bridging the Divide
  2. Kester W. Data Conversion Handbook//Analog Devices, 2004.

Как звучат различные типы ЦАП

Довольно часто автор читает дискуссии, в которых обсуждается предпочтение одного вида DAC перед другим. Участники дискуссии имеют практический опыт прослушивания ЦАП и оценки их качества звучания.

В этой статье автор не будет рассматривать качество записи/сведения/постпродакшн, которые также являются вопросом оценки качества звука DAC. Потому, что достигнуть полной идентичности копии одной записи в разных форматах может быть технически невозможно.

Производство аудио треков имеет несколько стадий:

  • запись;
  • сведение;
  • постпродакшн/мастеринг;
  • конверсия в разные форматы.

Как производятся тестовые аудио записи

На картинке выше изображены несколько путей производства тестовых музыкальных записей.

Для некоторых записей некоторые стадии могут быть исключены. Или для одна мастер-запись (финальный продукт музыкального производства) может быть конвертирована в несколько форматов.

Один акустический материал может быть записан сразу в 2 формата. В этом случае разница имеется в записывающем оборудовании (микрофоны и их предусилители, аналого-цифровые конвертеры и пр.) и его настройках.

Таким образом, сравнение типов ЦАП может включать, как минимум, сравнение конвертеров аудио файлов или записывающего оборудования.

Основная техническая проблема, возникающая при сравнении типов DAC — это различия в их схемах.

На картинке показано влияние внутренних модулей цифро-аналоговых преобразователей на качество звука (уровень искажений).

Здесь может быть много переменных, которые необходимо рассматривать при сравнении DAC.

Например, в резисторных ЦАП, сопротивления могут иметь различные разбросы. Это может привести к различной нелинейности и разнице в звуке. Даже между различными экземплярами одной и той же модели устройства.

Другой пример: некий PCM DAC имеет проблемы алиасов оверсемплинга, но сравниваемый DSD DAC имеет худший аналоговый фильтр. Возможно ли предположить, который из них звучит лучше? Вероятно, нет.

Таким образом, невозможно сравнить звучание типов DAC, как абстрактных устройств. Но можно сравнить звучание конкретных экземпляров реальных цифро-аналоговых конвертеров, невзирая на их внутреннее устройство.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
The voice for you
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: